In this paper, we generalize methods in the Difference in Differences (DiD) literature by showing that both additive and multiplicative standard and coarse Structural Nested Mean Models (Robins, 1994, 1997, 1998, 2000, 2004; Lok and Degruttola, 2012; Vansteelandt and Joffe, 2014) are identified under parallel trends assumptions. Our methodology enables adjustment for time-varying covariates, identification of effect heterogeneity as a function of time-varying covariates, and estimation of treatment effects under a general class of treatment patterns (e.g. we do not restrict to the `staggered adoption' setting). We stress that these extensions come essentially for free, as our parallel trends assumption is not stronger than other parallel trends assumptions in the DiD literature. However, in contrast to much of the DiD literature, we only consider panel data, not repeated cross sectional data. We also explain how to estimate optimal treatment regimes via optimal regime Structural Nested Mean Models under parallel trends assumptions plus an assumption that there is no effect modification by unobserved confounders. Finally, we illustrate our methods with real data applications estimating effects of bank deregulation on housing prices and effects of floods on flood insurance take-up.
翻译:在本文中,我们概括了差异差异差异(DID)文献中的方法,表明在平行趋势假设下,在平行趋势假设下确定了“差异(Robins,1994年、1997年、1998年、2000年、2004年、Lok和Degruttola,2012年;Vansteelandt和Joffe,2014年)两种模式(Robins,1994年、1997年、1997年、1998年、2000年、2004年;Lok和Degruttola,2012年;Vansteelandt和Joffe,2014年)。我们的方法允许对时间变化的共变异性进行调整,将效应异性确定为时间变化的共变异性的一个函数,并估算一般治疗模式下的待遇效果(例如,我们并不局限于“错开的采用”设置。我们强调,这些扩展基本上是免费的,因为我们的平行趋势假设并不比DiD文献中的其他平行趋势假设更强。然而,我们只考虑小组数据数据,而不是重复跨部分数据。我们还解释如何通过在平行趋势假设下通过最佳制度结构模型模型假设来估计最佳治疗制度、Nesed Modmemed Mod Mod Mod Mod Mods 模型的假设,以及假设不会产生效果。我们用实际数据来估计对洪水价格和洪灾的影响。