We prove that the number of edges of a multigraph $G$ with $n$ vertices is at most $O(n^2\log n)$, provided that any two edges cross at most once, parallel edges are noncrossing, and the lens enclosed by every pair of parallel edges in $G$ contains at least one vertex. As a consequence, we prove the following extension of the Crossing Lemma of Ajtai, Chv\'atal, Newborn, Szemer\'edi and Leighton, if $G$ has $e \geq 4n$ edges, in any drawing of $G$ with the above property, the number of crossings is $\Omega\left(\frac{e^3}{n^2\log(e/n)}\right)$. This answers a question of Kaufmann et al. and is tight up to the logarithmic factor.
翻译:我们证明,以美元为顶点的多元G$的边缘数量最多为O(n ⁇ 2\log n)美元,只要任何两个边缘最多一次,平行边缘是非交叉的,而每对平行边缘以$为底点的镜头至少包含一个顶点。因此,我们证明Ajtai、Chv\'atal、Chv\'atal、新生儿、Szemer\'edi和L88on的交叉 Lemma的延伸,如果$G$为$\geq 4n$的边缘,在任何绘制上述属性的G$中,过境点的数量是$\Omega\left (\frac{e ⁇ 3 ⁇ n ⁇ 2\log(e/n) ⁇ right(e/n)$。这回答了Kaufmann等人的问题,而且与对数系数很接近。