We consider computing eigenspaces of an elliptic self-adjoint operator depending on a countable number of parameters in an affine fashion. The eigenspaces of interest are assumed to be isolated in the sense that the corresponding eigenvalues are separated from the rest of the spectrum for all values of the parameters. We show that such eigenspaces can in fact be extended to complex-analytic functions of the parameters and quantify this analytic dependence in way that leads to convergence of sparse polynomial approximations. A stochastic collocation method on an anisoptropic sparse grid in the parameter domain is proposed for computing a basis for the eigenspace of interest. The convergence of this method is verified in a series of numerical examples based on the eigenvalue problem of a stochastic diffusion operator.
翻译:我们考虑计算一个椭圆自合操作器的机能空间,这取决于各种参数的可计算数量。假定有关机能空间是孤立的,因为相应的机能空间与所有参数值的光谱其余部分是分开的。我们表明,这种机能空间实际上可以扩大到参数的复杂分析功能,并量化这种分析依赖性,从而导致稀有的多元近似汇合。提议在参数域的无观测微小电网上采用随机同位法,以计算有关机能的基础。根据一个随机扩散操作器的机能价值问题,在一系列数字实例中验证这一方法的趋同性。