In this work, we consider $d$-{\sc Hyperedge Estimation} and $d$-{\sc Hyperedge Sample} problem in a hypergraph $\mathcal{H}(U(\mathcal{H}),\mathcal{F}(\mathcal{H}))$ in the query complexity framework, where $U(\mathcal{H})$ denotes the set of vertices and $\mathcal{F}(\mathcal{H})$ denotes the set of hyperedges. The oracle access to the hypergraph is called {\sc Colorful Independence Oracle} ({\sc CID}), which takes $d$ (non-empty) pairwise disjoint subsets of vertices $A_1,\ldots,A_d \subseteq U(\mathcal{H})$ as input, and answers whether there exists a hyperedge in $\mathcal{H}$ having (exactly) one vertex in each $A_i, i \in \{1,2,\ldots,d\}$. The problem of $d$-{\sc Hyperedge Estimation} and $d$-{\sc Hyperedge Sample} with {\sc CID} oracle access is important in its own right as a combinatorial problem. Also, Dell {\it{et al.}}~[SODA '20] established that {\em decision} vs {\em counting} complexities of a number of combinatorial optimization problems can be abstracted out as $d$-{\sc Hyperedge Estimation} problems with a {\sc CID} oracle access. The main technical contribution of the paper is an algorithm that estimates $m= \lvert {\mathcal{F}(\mathcal{H})}\rvert$ with $\widehat{m}$ such that { $$ \frac{1}{C_{d}\log^{d-1} n} \;\leq\; \frac{\widehat{m}}{m} \;\leq\; C_{d} \log ^{d-1} n . $$ by using at most $C_{d}\log ^{d+2} n$ many {\sc CID} queries, where $n$ denotes the number of vertices in the hypergraph $\mathcal{H}$ and $C_{d}$ is a constant that depends only on $d$}. Our result coupled with the framework of Dell {\it{et al.}}~[SODA '21] implies improved bounds for a number of fundamental problems.


翻译:在这项工作中,我们在查询复杂框架中考虑$- $- 超额计算 [超额计算} 和$- 超额计算 问题。 超额计算( U)( mathcal{H}),\ mathcal{F} 美元( mathcal{H} ) 在查询复杂框架中考虑$( U)( mathcal{H} ) 美元, 其中美元表示的是自动计算和 美元( mathcal{ F}, 美元表示的是超额计算; 超额计算( 超额计算) 的接入( ) 美元( 彩色独立) ( c), 它需要美元( 非破产) 双对不相交的子集 美元 ($_ 1,\ ildot, A_ d) 和 美元( c) 技术问题, 以美元( 美元) 和 美元( 美元) 货币( ) 的高级计算问题 。

0
下载
关闭预览

相关内容

甲骨文公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989年正式进入中国市场。2013年,甲骨文已超越 IBM ,成为继 Microsoft 后全球第二大软件公司。
专知会员服务
51+阅读 · 2021年8月8日
专知会员服务
85+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2021年8月8日
专知会员服务
85+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员