In this work, we consider $d$-{\sc Hyperedge Estimation} and $d$-{\sc Hyperedge Sample} problem in a hypergraph $\mathcal{H}(U(\mathcal{H}),\mathcal{F}(\mathcal{H}))$ in the query complexity framework, where $U(\mathcal{H})$ denotes the set of vertices and $\mathcal{F}(\mathcal{H})$ denotes the set of hyperedges. The oracle access to the hypergraph is called {\sc Colorful Independence Oracle} ({\sc CID}), which takes $d$ (non-empty) pairwise disjoint subsets of vertices $A_1,\ldots,A_d \subseteq U(\mathcal{H})$ as input, and answers whether there exists a hyperedge in $\mathcal{H}$ having (exactly) one vertex in each $A_i, i \in \{1,2,\ldots,d\}$. The problem of $d$-{\sc Hyperedge Estimation} and $d$-{\sc Hyperedge Sample} with {\sc CID} oracle access is important in its own right as a combinatorial problem. Also, Dell {\it{et al.}}~[SODA '20] established that {\em decision} vs {\em counting} complexities of a number of combinatorial optimization problems can be abstracted out as $d$-{\sc Hyperedge Estimation} problems with a {\sc CID} oracle access. The main technical contribution of the paper is an algorithm that estimates $m= \lvert {\mathcal{F}(\mathcal{H})}\rvert$ with $\widehat{m}$ such that { $$ \frac{1}{C_{d}\log^{d-1} n} \;\leq\; \frac{\widehat{m}}{m} \;\leq\; C_{d} \log ^{d-1} n . $$ by using at most $C_{d}\log ^{d+2} n$ many {\sc CID} queries, where $n$ denotes the number of vertices in the hypergraph $\mathcal{H}$ and $C_{d}$ is a constant that depends only on $d$}. Our result coupled with the framework of Dell {\it{et al.}}~[SODA '21] implies improved bounds for a number of fundamental problems.
翻译:在这项工作中,我们在查询复杂框架中考虑$- $- 超额计算 [超额计算} 和$- 超额计算 问题。 超额计算( U)( mathcal{H}),\ mathcal{F} 美元( mathcal{H} ) 在查询复杂框架中考虑$( U)( mathcal{H} ) 美元, 其中美元表示的是自动计算和 美元( mathcal{ F}, 美元表示的是超额计算; 超额计算( 超额计算) 的接入( ) 美元( 彩色独立) ( c), 它需要美元( 非破产) 双对不相交的子集 美元 ($_ 1,\ ildot, A_ d) 和 美元( c) 技术问题, 以美元( 美元) 和 美元( 美元) 货币( ) 的高级计算问题 。