This work proposes a rapid global solver for nonconvex low-rank matrix factorization (MF) problems that we name MF-Global. Through convex lifting steps, our method efficiently escapes saddle points and spurious local minima ubiquitous in noisy real-world data, and is guaranteed to always converge to the global optima. Moreover, the proposed approach adaptively adjusts the rank for the factorization and provably identifies the optimal rank for MF automatically in the course of optimization through tools of manifold identification, and thus it also spends significantly less time on parameter tuning than existing MF methods, which require an exhaustive search for this optimal rank. On the other hand, when compared to methods for solving the lifted convex form only, MF-Global leads to significantly faster convergence and much shorter running time. Experiments on real-world large-scale recommendation system problems confirm that MF-Global can indeed effectively escapes spurious local solutions at which existing MF approaches stuck, and is magnitudes faster than state-of-the-art algorithms for the lifted convex form.
翻译:这项工作建议了一种快速的全球解决方案, 用于我们命名MF- Global 的“ 非碳化” 低级矩阵化( MF) 问题。 通过调试步骤, 我们的方法有效地摆脱了马鞍点, 并冒昧地在现实世界数据中无处不在, 并且保证总是会与全球的奥秘相融合。 此外, 拟议的方法通过多重识别工具, 适应性地调整了系数的等级, 并可以在优化过程中自动确定MF的最佳等级, 从而也比现有的参数调控方法花费的时间要少得多, 这需要彻底地搜索这一最佳等级。 另一方面, 与只解决已提升的convex 格式的方法相比, MF- Global 导致大大加快了趋同速度, 并缩短了运行时间。 在现实世界大型建议系统问题上的实验证明, MF- Global确实能够有效地摆脱现有MF 方法所卡住的刺激性本地解决方案, 并且其规模比目前提升convex 格式的状态算法要快得多。