Modern time series datasets are often high-dimensional, incomplete/sparse, and nonstationary. These properties hinder the development of scalable and efficient solutions for time series forecasting and analysis. To address these challenges, we propose a Nonstationary Temporal Matrix Factorization (NoTMF) model, in which matrix factorization is used to reconstruct the whole time series matrix and vector autoregressive (VAR) process is imposed on a properly differenced copy of the temporal factor matrix. This approach not only preserves the low-rank property of the data but also offers consistent temporal dynamics. The learning process of NoTMF involves the optimization of two factor matrices and a collection of VAR coefficient matrices. To efficiently solve the optimization problem, we derive an alternating minimization framework, in which subproblems are solved using conjugate gradient and least squares methods. In particular, the use of conjugate gradient method offers an efficient routine and allows us to apply NoTMF on large-scale problems. Through extensive experiments on Uber movement speed dataset, we demonstrate the superior accuracy and effectiveness of NoTMF over other baseline models. Our results also confirm the importance of addressing the nonstationarity of real-world time series data such as spatiotemporal traffic flow/speed.
翻译:现代时间序列数据集往往是高度的、不完整的/不完整的和不静止的。这些特性妨碍了为时间序列预测和分析制定可缩放的高效解决方案。为了应对这些挑战,我们提议了一个非静止的时空矩阵因子化模型(NoTMF)模型,其中矩阵因子化用于重建整个时间序列矩阵和矢量自动递增(VAR)进程,在时间要素矩阵的正确不同副本上强制采用全时序列和矢量递增(VAR)程序。这种方法不仅保存了数据中低级属性,而且提供了一致的时间动态。 NoTMF的学习过程包括优化两个要素矩阵和收集VAR系数矩阵。为了有效解决优化问题,我们制定了一个交替最小化框架,在这个框架中,使用同级梯度梯度和最小方法方法解决子问题。特别是,使用同级梯度梯度法提供了一个高效的例行程序,使我们能够在大规模问题上应用NTMF。通过对Uber移动速度数据集的广泛实验,我们展示了NTMF相对于其他基线模型的高度精确性和有效性。我们的结果还证实了处理非静止数据流流的重要性。