Event Extraction bridges the gap between text and event signals. Based on the assumption of trigger-argument dependency, existing approaches have achieved state-of-the-art performance with expert-designed templates or complicated decoding constraints. In this paper, for the first time we introduce the prompt-based learning strategy to the domain of Event Extraction, which empowers the automatic exploitation of label semantics on both input and output sides. To validate the effectiveness of the proposed generative method, we conduct extensive experiments with 11 diverse baselines. Empirical results show that, in terms of F1 score on Argument Extraction, our simple architecture is stronger than any other generative counterpart and even competitive with algorithms that require template engineering. Regarding the measure of recall, it sets new overall records for both Argument and Trigger Extractions. We hereby recommend this framework to the community, with the code publicly available at https://git.io/GDAP.


翻译:根据对触发参数依赖的假设,现有方法以专家设计的模板或复杂的解码限制达到了最先进的性能。在本文件中,我们首次在“事件提取”领域引入了基于迅速的学习战略,使自动利用输入和输出方的标签语义成为权力。为了验证拟议基因化方法的有效性,我们用11个不同的基线进行了广泛的实验。经验结果表明,从F1分到“Argument提取”,我们简单的结构比任何其他需要模板工程的配方都要强,甚至比算法更具有竞争力。关于回放的计量,我们为标语和Trigger摘录设定了新的总体记录。我们特此向社区推荐这一框架,并在https://git.io/GDAP上公开提供代码。

0
下载
关闭预览

相关内容

事件抽取指的是从非结构化文本中抽取事件信息,并将其以结构化形式呈现出来的任务。例如从“毛泽东1893 年出生于湖南湘潭”这句话中抽取事件{类型:出生,人物:毛泽东,时间:1893 年,出生地:湖南湘潭}。 事件抽取任务通常包含事件类型识别和事件元素填充两个子任务。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年1月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
3+阅读 · 2019年3月1日
Arxiv
7+阅读 · 2018年1月21日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年1月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员