Magnetic materials are crucial components of many technologies that could drive the ecological transition, including electric motors, wind turbine generators and magnetic refrigeration systems. Discovering materials with large magnetic moments is therefore an increasing priority. Here, using state-of-the-art machine learning methods, we scan the Inorganic Crystal Structure Database (ICSD) of hundreds of thousands of existing materials to find those that are ferromagnetic and have large magnetic moments. Crystal graph convolutional neural networks (CGCNN), materials graph network (MEGNet) and random forests are trained on the Materials Project database that contains the results of high-throughput DFT predictions. For random forests, we use a stochastic method to select nearly one hundred relevant descriptors based on chemical composition and crystal structure. This turns out to give results for the test sets that are comparable to those of neural networks. The comparison between these different machine learning approaches gives an estimate of the errors for our predictions on the ICSD database.
翻译:磁材料是许多能够推动生态转型的技术的重要组成部分,包括电动机、风力涡轮发电机和磁制冷系统。因此,发现具有大磁时段的材料是一个越来越重要的优先事项。在这里,我们使用最先进的机器学习方法,扫描数十万种现有材料的无机晶体结构数据库,以找到那些具有铁磁性和具有巨大磁时段的材料。晶形卷状神经网络、材料图形网络和随机森林在材料项目数据库中接受培训,该数据库载有高通量DFT预测结果。对于随机森林,我们使用随机森林,我们使用随机方法选择了近100个以化学成分和晶体结构为基础的相关描述器。这反过来为与神经网络相似的测试组提供了结果。这些不同的机器学习方法之间的比较,使我们在ICSD数据库的预测中估计出错误。