Bayesian experimental design (BED) is to answer the question that how to choose designs that maximize the information gathering. For implicit models, where the likelihood is intractable but sampling is possible, conventional BED methods have difficulties in efficiently estimating the posterior distribution and maximizing the mutual information (MI) between data and parameters. Recent work proposed the use of gradient ascent to maximize a lower bound on MI to deal with these issues. However, the approach requires a sampling path to compute the pathwise gradient of the MI lower bound with respect to the design variables, and such a pathwise gradient is usually inaccessible for implicit models. In this paper, we propose a novel approach that leverages recent advances in stochastic approximate gradient ascent incorporated with a smoothed variational MI estimator for efficient and robust BED. Without the necessity of pathwise gradients, our approach allows the design process to be achieved through a unified procedure with an approximate gradient for implicit models. Several experiments show that our approach outperforms baseline methods, and significantly improves the scalability of BED in high-dimensional problems.
翻译:Bayesian 实验设计(BED) 是要回答一个问题,即如何选择尽量扩大信息收集的设计。对于隐含模型,如果这种可能性是棘手的,但抽样是可能的,传统的BED方法在有效估计数据与参数之间的后部分布和尽量扩大相互信息(MI)方面有困难。最近的工作提议使用梯度来最大限度地降低MI处理这些问题的界限。然而,这个方法要求有一个抽样路径来计算MI在设计变量方面较低约束的路径梯度,而对于隐含模型来说,这种路径梯度通常无法使用。在本文中,我们提出了一个新颖的方法,利用在随机近似梯度上的进展,结合一个平稳的变异性MI 估计仪,以便高效和稳健的BED 。我们的方法使设计过程得以通过一种统一的程序实现,其中隐含模型的大致梯度为梯度。一些实验表明,我们的方法不符合基准方法,大大改进了高维度问题的BED的可缩度。