Artificial intelligence (AI) systems can provide many beneficial capabilities but also risks of adverse events. Some AI systems could present risks of events with very high or catastrophic consequences at societal scale. The US National Institute of Standards and Technology (NIST) is developing the NIST Artificial Intelligence Risk Management Framework (AI RMF) as voluntary guidance on AI risk assessment and management for AI developers and others. For addressing risks of events with catastrophic consequences, NIST indicated a need to translate from high level principles to actionable risk management guidance. In this document, we provide detailed actionable-guidance recommendations focused on identifying and managing risks of events with very high or catastrophic consequences, intended as a risk management practices resource for NIST for AI RMF version 1.0 (scheduled for release in early 2023), or for AI RMF users, or for other AI risk management guidance and standards as appropriate. We also provide our methodology for our recommendations. We provide actionable-guidance recommendations for AI RMF 1.0 on: identifying risks from potential unintended uses and misuses of AI systems; including catastrophic-risk factors within the scope of risk assessments and impact assessments; identifying and mitigating human rights harms; and reporting information on AI risk factors including catastrophic-risk factors. In addition, we provide recommendations on additional issues for a roadmap for later versions of the AI RMF or supplementary publications. These include: providing an AI RMF Profile with supplementary guidance for cutting-edge increasingly multi-purpose or general-purpose AI. We aim for this work to be a concrete risk-management practices contribution, and to stimulate constructive dialogue on how to address catastrophic risks and associated issues in AI standards.


翻译:人工智能系统可以提供许多有益的能力,但也有可能带来不利事件的风险。一些人工智能系统可以提供社会规模的高度或灾难性后果的事件风险。美国国家标准和技术研究所(NIST)正在开发NIST人工智能情报风险管理框架(AI RMF),作为AI的风险评估和管理自愿指南,供AI的开发者和其他人使用。为了应对具有灾难性后果的事件风险,NIST表示需要将高层次原则转化为可操作的风险管理指导。在本文件中,我们提供了详细的可执行的指导性建议,侧重于查明和管理具有非常高或灾难性后果的事件的风险,目的是作为NISTI1.0版(定于2023年初发布)或AI RMF用户或酌情其他AI风险管理准则和标准的风险管理做法资源。我们还为我们的建议提供了我们的方法。我们为AI RMF 1.0 提供了可操作的指导性建议:查明可能无意使用和滥用AI系统的风险;包括在风险评估和影响评估范围内的灾难性风险因素;查明和减轻人权损害的风险管理做法;为AI的多用途风险管理提供新的风险评估,我们为AI的危险性出版物提供一份补充性报告。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
46+阅读 · 2021年10月4日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员