Fingerprinting is critical for maintaining traceability and protecting the intellectual property (IP) of developers, as LLMs deployed in web applications are susceptible to unauthorized redistribution and misuse via fine-tuning or black-box deployment. However, current backdoor-based fingerprinting methods face a fundamental trade-off: fingerprints embedded as garbled text are easily detected and filtered, whereas those crafted as coherent natural language are prone to being triggered unintentionally. To overcome these limitations, we propose RFEdit, a knowledge-editing framework that embeds a rule-based multilingual natural language fingerprint (MNLF) by modifying a sparse subset of model weights. This approach enables efficient and robust fingerprint injection with minimal impact on unrelated knowledge in LLMs. Our RFEdit framework is further safeguarded by Fingerprint Subspace-aware Fine-Tuning (FSFT), which mitigates fingerprint degradation during legitimate fine-tuning by restricting parameter updates to the fingerprint subspace. This approach preserves fingerprint integrity while enhancing downstream task performance of LLMs. These advances establish a comprehensive pipeline from fingerprint injection to defense, achieving high detection effectiveness, robustness against adversarial manipulations, harmlessness to model utility, and persistence under fine-tuning. Extensive experiments demonstrate that RFEdit maintains robustness under quantization and pruning. Additionally, fingerprint effectiveness is generally improved by more than 10\% when combined with FSFT for math and alpaca downstream tasks.
翻译:暂无翻译