Policymakers often choose a policy bundle that is a combination of different interventions in different dosages. We develop a new technique -- treatment variant aggregation (TVA) -- to select a policy from a large factorial design. TVA pools together policy variants that are not meaningfully different and prunes those deemed ineffective. This allows us to restrict attention to aggregated policy variants, consistently estimate their effects on the outcome, and estimate the best policy effect adjusting for the winner's curse. We apply TVA to a large randomized controlled trial that tests interventions to stimulate demand for immunization in Haryana, India. The policies under consideration include reminders, incentives, and local ambassadors for community mobilization. Cross-randomizing these interventions, with different dosages or types of each intervention, yields 75 combinations. The policy with the largest impact (which combines incentives, ambassadors who are information hubs, and reminders) increases the number of immunizations by 44% relative to the status quo. The most cost-effective policy (information hubs, ambassadors, and SMS reminders but no incentives) increases the number of immunizations per dollar by 9.1% relative to status quo.


翻译:决策者往往选择一种政策组合,这种组合是不同剂量的不同干预措施的组合。我们开发了一种新技术 -- -- 治疗变量汇总(TVA) -- -- 从一个大要素设计中选择一种政策。TVA集合了没有实际意义的不同政策变量,而认为无效的政策变量。这使我们能够限制对综合政策变量的关注,一致估计其对结果的影响,并估计最佳政策效果,以适应获胜者的诅咒。我们将TVA应用到一个大型随机控制的试验中,测试干预措施以刺激印度哈里亚纳地区免疫需求。审议中的政策包括提醒、激励和当地社区动员大使。交叉调整这些干预措施,使用不同的剂量或每种干预措施的类型,产生75种组合。影响最大的政策(结合激励、大使作为信息枢纽和提醒)比现状增加了44%的免疫数量。最符合成本效益的政策(信息中心、大使和SMS提醒,但没有激励措施)比现状增加了每美元免疫数量9.1%。

0
下载
关闭预览

相关内容

Reminders是一款软件,支持Win9x/Me/NT/2000/XP/2003。
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月23日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员