Sorted L-One Penalized Estimation (SLOPE) has shown the nice theoretical property as well as empirical behavior recently on the false discovery rate (FDR) control of high-dimensional feature selection by adaptively imposing the non-increasing sequence of tuning parameters on the sorted $\ell_1$ penalties. This paper goes beyond the previous concern limited to the FDR control by considering the stepdown-based SLOPE to control the probability of $k$ or more false rejections ($k$-FWER) and the false discovery proportion (FDP). Two new SLOPEs, called $k$-SLOPE and F-SLOPE, are proposed to realize $k$-FWER and FDP control respectively, where the stepdown procedure is injected into the SLOPE scheme. For the proposed stepdown SLOPEs, we establish their theoretical guarantees on controlling $k$-FWER and FDP under the orthogonal design setting, and also provide an intuitive guideline for the choice of regularization parameter sequence in much general setting. Empirical evaluations on simulated data validate the effectiveness of our approaches on controlled feature selection and support our theoretical findings.


翻译:L-One 惩罚性估计(SLOPE) 已经分类了 L- One 惩罚性估计(SLOPE), 显示了最近对高维特征选择的虚假发现率(FDR) 控制方面良好的理论属性和经验行为, 通过对分类的 $\ ell_ 1美元 罚款 施以不增加的调制参数序列, 对高维特征选择进行了适应性调整 。 本文超越了此前对FDR 控制的关注范围, 通过考虑以逐步降低为基础的 SLOPE 控制 控制 $k$- FWER 或更多假拒绝的概率 (k$-FWER) 和假发现比例 (FDP ) 。 提出了两个新的 SLOPE, 名为 $k$- SLOPE 和 F- SLOPE, 分别实现 $k$-FWER 和 FDP 控制 。 在 SLOPE 计划 中注入了逐步递减程序 。 对于拟议的逐步削减 SLOPE, 我们为控制特性选择方法的有效性建立了理论保证, 我们为控制性选择了控制性参数选择 提供了直观的理论支持。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
11+阅读 · 2020年12月2日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员