We consider a popular family of constrained optimization problems arising in machine learning that involve optimizing a non-decomposable evaluation metric with a certain thresholded form, while constraining another metric of interest. Examples of such problems include optimizing the false negative rate at a fixed false positive rate, optimizing precision at a fixed recall, optimizing the area under the precision-recall or ROC curves, etc. Our key idea is to formulate a rate-constrained optimization that expresses the threshold parameter as a function of the model parameters via the Implicit Function theorem. We show how the resulting optimization problem can be solved using standard gradient based methods. Experiments on benchmark datasets demonstrate the effectiveness of our proposed method over existing state-of-the art approaches for these problems. The code for the proposed method is available at https://github.com/google-research/google-research/tree/master/implicit_constrained_optimization .
翻译:我们认为,在机器学习中产生的限制优化问题是一个流行的大家庭,它涉及以某种临界形式优化非可分解的评价指标,同时限制另一种利益度量。这些问题的例子包括:以固定的假正率优化假负率,在固定召回时优化精确度,在精确召回或ROC曲线下优化区域,等等。我们的关键想法是通过隐形函数理论来制定一个受费率限制的优化,通过隐形函数表达阈值参数,作为模型参数的函数。我们展示了如何利用基于标准梯度的方法解决由此产生的优化问题。基准数据集实验表明,我们所提议的方法相对于目前处理这些问题的先进方法而言是有效的。提议方法的代码可在https://github.com/google-research/google-research/tree/masterm/imcli_constrate_opticed_opimization。