We perform a bifurcation analysis of a two-dimensional magnetic Rayleigh--B\'enard problem using a numerical technique called deflated continuation. Our aim is to study the influence of the magnetic field on the bifurcation diagram as the Chandrasekhar number $Q$ increases and compare it to the standard (non-magnetic) Rayleigh--B\'enard problem. We compute steady states at a high Chandrasekhar number of $Q=10^3$ over a range of the Rayleigh number $0\leq \Ra\leq 10^5$. These solutions are obtained by combining deflation with a continuation of steady states at low Chandrasekhar number, which allows us to explore the influence of the strength of the magnetic field as $Q$ increases from low coupling, where the magnetic effect is almost negligible, to strong coupling at $Q=10^3$. We discover a large profusion of states with rich dynamics and observe a complex bifurcation structure with several pitchfork, Hopf, and saddle-node bifurcations. Our numerical simulations show that the onset of bifurcations in the problem is delayed when $Q$ increases, while solutions with fluid velocity patterns aligning with the background vertical magnetic field are privileged. Additionally, we report a branch of states that stabilizes at high magnetic coupling, suggesting that one may take advantage of the magnetic field to discriminate solutions.
翻译:暂无翻译