We propose a new asymptotic expansion method for nonlinear filtering, based on a small parameter in the system noise. The conditional expectation is expanded as a power series in the noise level, with each coefficient computed by solving a system of ordinary differential equations. This approach mitigates the trade-off between computational efficiency and accuracy inherent in existing methods such as Gaussian approximations and particle filters. Moreover, by incorporating an Edgeworth-type expansion, our method captures complex features of the conditional distribution, such as multimodality, with significantly lower computational cost than conventional filtering algorithms.
翻译:暂无翻译