The CTC model has been widely applied to many application scenarios because of its simple structure, excellent performance, and fast inference speed. There are many peaks in the probability distribution predicted by the CTC models, and each peak represents a non-blank token. The recognition latency of CTC models can be reduced by encouraging the model to predict peaks earlier. Existing methods to reduce latency require modifying the transition relationship between tokens in the forward-backward algorithm, and the gradient calculation. Some of these methods even depend on the forced alignment results provided by other pretrained models. The above methods are complex to implement. To reduce the peak latency, we propose a simple and novel method named peak-first regularization, which utilizes a frame-wise knowledge distillation function to force the probability distribution of the CTC model to shift left along the time axis instead of directly modifying the calculation process of CTC loss and gradients. All the experiments are conducted on a Chinese Mandarin dataset AISHELL-1. We have verified the effectiveness of the proposed regularization on both streaming and non-streaming CTC models respectively. The results show that the proposed method can reduce the average peak latency by about 100 to 200 milliseconds with almost no degradation of recognition accuracy.


翻译:四氯化碳模型由于其简单结构、优异性能和快速推导速度,已广泛应用于许多应用设想方案; 四氯化碳模型预测的概率分布有许多峰值,每个峰值代表非空标; 通过鼓励模型提前预测峰值,可以降低四氯化碳模型的识别延迟度; 现有的减少潜伏的方法要求改变前向后演算法和梯度计算之间的过渡关系; 其中一些方法甚至取决于其他预先培训的模型提供的强制调整结果。 以上方法执行起来复杂。 为了减少峰值,我们提出了一种简单和新颖的方法,名为峰值第一正规化,它使用框架性知识蒸馏功能,迫使四氯化碳模型的概率分布沿时间轴向左移动,而不是直接修改四氯化碳损失和梯度的计算过程。 所有的实验都是在中国曼达林数据集AISHELL-1上进行的。 我们核实了拟议的对流流式和不流式四氯化碳模型的正规化的有效性。 提议的方法显示,通过100毫克的降解度,几乎可以降低100毫克的平均值。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员