Selecting influential nonlinear interactive features from ultrahigh dimensional data has been an important task in various fields. However, statistical accuracy and computational feasibility are the two biggest concerns when more than half a million features are collected in practice. Many extant feature screening approaches are either focused on only main effects or heavily rely on heredity structure, hence rendering them ineffective in a scenario presenting strong interactive but weak main effects. In this article, we propose a new interaction screening procedure based on joint cumulant (named JCI-SIS). We show that the proposed procedure has strong sure screening consistency and is theoretically sound to support its performance. Simulation studies designed for both continuous and categorical predictors are performed to demonstrate the versatility and practicability of our JCI-SIS method. We further illustrate the power of JCI-SIS by applying it to screen 27,554,602,881 interaction pairs involving 234,754 single nucleotide polymorphisms (SNPs) for each of the 4,000 subjects collected from polycystic ovary syndrome (PCOS) patients and healthy controls.


翻译:从超高维数据中选择有影响的非线性互动特征是不同领域的一项重要任务,然而,统计准确性和计算可行性是实际收集50多万个特征时的两个最大关切,许多现有特征筛选方法要么只侧重于主要影响,要么严重依赖遗传结构,从而在具有强大互动作用但又薄弱的主要效应的情景下使其无效。在本条中,我们提议采用基于联合累积的新的互动筛选程序(称为JCI-SIS)。我们表明,拟议的程序具有很强的可靠筛选一致性,理论上支持其性能是健全的。为连续和直线预测器设计的模拟研究旨在展示我们JCI-SIS方法的多功能性和不实用性。我们进一步说明JCI-SIS的力量,将它应用到27,554,602,881个互动配对的屏幕上,每对从多细胞卵综合症(PCOS)病人和健康控制中收集的4,000个主题都涉及234,754,500个单核糖多元形态(SNPPs),涉及234。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
6+阅读 · 2021年11月12日
Arxiv
7+阅读 · 2018年12月5日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
4+阅读 · 2018年6月14日
Arxiv
9+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
6+阅读 · 2018年1月14日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关论文
Arxiv
0+阅读 · 2022年1月13日
Arxiv
6+阅读 · 2021年11月12日
Arxiv
7+阅读 · 2018年12月5日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
4+阅读 · 2018年6月14日
Arxiv
9+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
6+阅读 · 2018年1月14日
Top
微信扫码咨询专知VIP会员