The natural integration of extremely large antenna arrays (ELAAs) and terahertz (THz) communications can potentially achieve Tbps data rates in 6G networks. However, due to the extremely large array aperture and wide bandwidth, a new phenomenon called "near-field beam split" emerges. This phenomenon causes beams at different frequencies to focus on distinct physical locations, leading to a significant gain loss of beamforming. To address this challenging problem, we first harness a piecewise-far-field channel model to approximate the complicated near-field wideband channel. In this model, the entire large array is partitioned into several small sub-arrays. While the wireless channel's phase discrepancy across the entire array is modeled as near-field spherical, the phase discrepancy within each sub-array is approximated as far-field planar. Built on this approximation, a phase-delay focusing (PDF) method employing delay phase precoding (DPP) architecture is proposed. Our PDF method could compensate for the intra-array far-field phase discrepancy and the inter-array near-field phase discrepancy via the joint control of phase shifters and time delayers, respectively. Theoretical and numerical results are provided to demonstrate the efficiency of the proposed PDF method in mitigating the near-field beam split effect.Finally, we define and derive a novel metric termed the "effective Rayleigh distance" by the evaluation of beamforming gain loss. Compared to classical Rayleigh distance, the effective Rayleigh distance is more accurate in determining the near-field range for practical communications.
翻译:暂无翻译