We present variational approximations of boundary value problems for curvature flow (curve shortening flow) and elastic flow (curve straightening flow) in two-dimensional Riemannian manifolds that are conformally flat. For the evolving open curves we propose natural boundary conditions that respect the appropriate gradient flow structure. Based on suitable weak formulations we introduce finite element approximations using piecewise linear elements. For some of the schemes a stability result can be shown. The derived schemes can be employed in very different contexts. For example, we apply the schemes to the Angenent metric in order to numerically compute rotationally symmetric self-shrinkers for the mean curvature flow. Furthermore, we utilise the schemes to compute geodesics that are relevant for optimal interface profiles in multi-component phase field models.


翻译:我们展示了两维的里格曼形的平流曲线曲线(曲线缩短流)和弹性流(曲线直线流)的边界值问题差异近似值。 对于不断演变的开阔曲线,我们提出尊重适当的梯度流结构的自然边界条件。根据适当的弱化配方,我们采用小片线性元素引入了有限的元素近近近值。对于某些计划,可以显示一个稳定的结果。衍生的办法可以在非常不同的环境下使用。例如,我们将这些办法应用到动能度上,以便从数字上对平均弯曲流进行交替的对称自剪。此外,我们利用这些办法来计算与多构件阶段实地模型的最佳界面特征相关的大地学特征。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
专知会员服务
161+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
腊月廿八 | 强化学习-TRPO和PPO背后的数学
AI研习社
17+阅读 · 2019年2月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
腊月廿八 | 强化学习-TRPO和PPO背后的数学
AI研习社
17+阅读 · 2019年2月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员