Spatial symmetries and invariances play an important role in the description of materials. When modelling material properties, it is important to be able to respect such invariances. Here we discuss how to model and generate random ensembles of tensors where one wants to be able to prescribe certain classes of spatial symmetries and invariances for the whole ensemble, while at the same time demanding that the mean or expected value of the ensemble be subject to a possibly 'higher' spatial invariance class. Our special interest is in the class of physically symmetric and positive definite tensors, as they appear often in the description of materials. As the set of positive definite tensors is not a linear space, but rather an open convex cone in the linear vector space of physically symmetric tensors, it may be advantageous to widen the notion of mean to the so-called Fr\'echet mean, which is based on distance measures between positive definite tensors other than the usual Euclidean one. For the sake of simplicity, as well as to expose the main idea as clearly as possible, we limit ourselves here to second order tensors. It is shown how the random ensemble can be modelled and generated, with fine control of the spatial symmetry or invariance of the whole ensemble, as well as its Fr\'echet mean, independently in its scaling and directional aspects. As an example, a 2D and a 3D model of steady-state heat conduction in a human proximal femur, a bone with high material anisotropy, is explored. It is modelled with a random thermal conductivity tensor, and the numerical results show the distinct impact of incorporating into the constitutive model different material uncertainties$-$scaling, orientation, and prescribed material symmetry$-$on the desired quantities of interest, such as temperature distribution and heat flux.
翻译:空间对称性和差异性在材料描述中扮演重要角色。 当建模材料属性时, 必须尊重这种差异。 我们在这里讨论如何建模和生成随机的 Exrons 组合, 以便人们能够为整个组合设定某些类型的空间对称性和差异性, 同时要求组合的平均值或预期值受制于可能“ 更高” 的空间差异级。 当建模材料属性时, 我们特别感兴趣的是物理对称和正确定 Exmocal 的类别, 因为它们经常出现在材料描述中 。 由于正确定 Exrons 组合不是线性空间, 而是在物理对称强度的矩阵空间中开一个开放的 convex 组合, 而同时要求将组合的平均或预期值扩大至所谓的Fr\'echchet 值值, 其以肯定 $ 美元 的空间差异值为基值之间的距离测量值, 我们特别感兴趣的是物理对正对正对正和正确定 确定 直径 的 Exmotor 级级级, 和 以正态 方向显示其正态 方向的 方向, 以正态 方向显示其正态 直方位 和正态 直方值 直方位 直方位 方向, 直方形 度 和直方位 直方位 直方位 度 度 度 度 直方形 直方形 度 度 度 度 度 度 直方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方