Skin cancer is one of the most deadly cancers worldwide. Yet, it can be reduced by early detection. Recent deep-learning methods have shown a dermatologist-level performance in skin cancer classification. Yet, this success demands a large amount of centralized data, which is oftentimes not available. Federated learning has been recently introduced to train machine learning models in a privacy-preserved distributed fashion demanding annotated data at the clients, which is usually expensive and not available, especially in the medical field. To this end, we propose FedPerl, a semi-supervised federated learning method that utilizes peer learning from social sciences and ensemble averaging from committee machines to build communities and encourage its members to learn from each other such that they produce more accurate pseudo labels. We also propose the peer anonymization (PA) technique as a core component of FedPerl. PA preserves privacy and reduces the communication cost while maintaining the performance without additional complexity. We validated our method on 38,000 skin lesion images collected from 4 publicly available datasets. FedPerl achieves superior performance over the baselines and state-of-the-art SSFL by 15.8%, and 1.8% respectively. Further, FedPerl shows less sensitivity to noisy clients.


翻译:皮肤癌是全世界最致命的癌症之一。 然而,可以通过早期检测来降低癌症。 最近的深层学习方法已经显示了皮肤癌分类方面的皮肤病学水平性能。 然而,这一成功需要大量集中数据,而这些数据往往是没有的。 最近还引入了联邦学习,以在保密的分布式中培训机器学习模式,要求客户提供附加说明数据,通常费用昂贵,且在医疗领域尤其如此。 为此,我们提出了FedPerl, 这是一种半监督的联合会式学习方法,利用社会科学的同行学习,以及从委员会机器中平均从委员会机器中获得的共性学习,建设社区,鼓励其成员相互学习,从而产生更准确的假标签。我们还建议将同行匿名化技术作为FedPerl的核心内容。 PA保护隐私,降低通信成本,同时保持不增加复杂性。 我们验证了我们从4个公开数据集收集的38 000个皮肤病素图像的方法。 FedPerl实现在基线和州-P- SS- 18 客户的敏感度上更高的业绩,分别显示为15.8 % 。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
因果关联学习,Causal Relational Learning
专知会员服务
183+阅读 · 2020年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
120+阅读 · 2019年12月31日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
238+阅读 · 2019年10月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
机器之心
18+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
机器之心
18+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员