We give structural results about bifibrations of (internal) $(\infty,1)$-categories with internal sums. This includes a higher version of Moens' Theorem, characterizing cartesian bifibrations with extensive aka stable and disjoint internal sums over lex bases as Artin gluings of lex functors. We also treat a generalized version of Moens' Theorem due to Streicher which does not require the Beck--Chevalley condition. Furthermore, we show that also in this setting the Moens fibrations can be characterized via a condition due to Zawadowski. Our account overall follows Streicher's presentation of fibered category theory \`{a} la B\'{e}nabou, generalizing the results to the internal, higher-categorical case, formulated in a synthetic setting. Namely, we work inside simplicial homotopy type theory, which has been introduced by Riehl and Shulman as a logical system to reason about internal $(\infty,1)$-categories, interpreted as Rezk objects in any given Grothendieck--Rezk--Lurie $(\infty,1)$-topos.
翻译:我们对内部( Inter) $( infty, 1) $( ) 的双折和内部金额进行结构性分析。 这包括一个更高版本的 Moens' Theorem, 将碳酸盐的双折与广泛的 aka 稳定性和不相干的内部基数定性为 Altin 基数的Artin Gluings 。 我们还将由于 Streicher 而不需要 Beck- Chevalley 条件的 Moens' 理论的通用版处理。 此外, 我们还显示, 在这种设置中, Moens 的双折也可以通过Zawadowski 的条件来定性。 我们的账户总体遵循 Streeicher 的纤维类别理论 {a} la B\ { { e} boub, 将结果概括为内部的、 更高分类的立体案例, 是在合成环境中的。 Namely, 我们的工作在简易的同型理论中进行, 由 Riehl和Shulman 引入, 作为关于内部 $(\ Infty, 1) $- category- Lez-1) 对象的逻辑系统, 任何给给 Rez- refin- Laz- 的内置 美元 。