We present Dojo, a differentiable physics engine for robotics that prioritizes stable simulation, accurate contact physics, and differentiability with respect to states, actions, and system parameters. Dojo achieves stable simulation at low sample rates and conserves energy and momentum by employing a variational integrator. A nonlinear complementarity problem, with second-order cones for friction, models hard contact and is reliably solved using a custom primal-dual interior-point method. Special properties of the interior-point method are exploited using the implicit-function theorem to efficiently compute smooth gradients that provide useful information through contact events. We demonstrate Dojo's unique ability to simulate hard contact while providing smooth, analytic gradients with a number of examples, including trajectory optimization, reinforcement learning, and system identification.
翻译:我们介绍Dojo, 机器人的可区分物理学引擎, 优先考虑稳定模拟、 准确接触物理学, 以及状态、 动作和系统参数的差异。 Dojo 以低采样率实现稳定模拟, 通过使用变式集成器节省能量和动力。 一个非线性互补问题, 摩擦为二阶锥, 模拟硬接触, 并且使用定制的原始二极内点方法可靠地解决。 内点方法的特殊特性正在利用隐含功能的定理来有效计算平滑的梯度, 通过联系活动提供有用的信息。 我们展示 Dojo 模拟硬接触的独特能力, 同时提供光滑、 分析性梯度, 包括轨迹优化、 强化学习 和系统识别 。