We introduce Habitat 2.0 (H2.0), a simulation platform for training virtual robots in interactive 3D environments and complex physics-enabled scenarios. We make comprehensive contributions to all levels of the embodied AI stack - data, simulation, and benchmark tasks. Specifically, we present: (i) ReplicaCAD: an artist-authored, annotated, reconfigurable 3D dataset of apartments (matching real spaces) with articulated objects (e.g. cabinets and drawers that can open/close); (ii) H2.0: a high-performance physics-enabled 3D simulator with speeds exceeding 25,000 simulation steps per second (850x real-time) on an 8-GPU node, representing 100x speed-ups over prior work; and, (iii) Home Assistant Benchmark (HAB): a suite of common tasks for assistive robots (tidy the house, prepare groceries, set the table) that test a range of mobile manipulation capabilities. These large-scale engineering contributions allow us to systematically compare deep reinforcement learning (RL) at scale and classical sense-plan-act (SPA) pipelines in long-horizon structured tasks, with an emphasis on generalization to new objects, receptacles, and layouts. We find that (1) flat RL policies struggle on HAB compared to hierarchical ones; (2) a hierarchy with independent skills suffers from 'hand-off problems', and (3) SPA pipelines are more brittle than RL policies.
翻译:我们引入了HID2.0 (H2.0) 一个模拟平台,用于在互动的3D环境和复杂的物理假设情景中培训虚拟机器人。我们为包含的AI堆 — — 数据、模拟和基准任务 — — 的各个层面做出了全面贡献。具体地说,我们介绍了:(一) 复制CAD:一个艺术家撰写的、附加说明的、可重新配置的3D公寓数据集(配对真实空间),配有清晰的物件(例如可以打开/关闭的柜子和抽屉);(二) H2.0:一个高性能物理学驱动的3D模拟器,速度超过每秒25 000个模拟步骤(850x实时),在8-GPU节点上,代表先前工作的100x加速;以及(三) 家助理基准:一套用于辅助机器人的共同任务(固定房屋,准备杂货,设置表格),测试一系列移动操纵能力。这些大型工程贡献使我们能够系统地比较规模深度强化学习(RL)和经典计划动作动作(SPA),从长式输油管政策到固定的R级标准版式标准,比R级政策更重。