Modeling what makes an advertisement persuasive, i.e., eliciting the desired response from consumer, is critical to the study of propaganda, social psychology, and marketing. Despite its importance, computational modeling of persuasion in computer vision is still in its infancy, primarily due to the lack of benchmark datasets that can provide persuasion-strategy labels associated with ads. Motivated by persuasion literature in social psychology and marketing, we introduce an extensive vocabulary of persuasion strategies and build the first ad image corpus annotated with persuasion strategies. We then formulate the task of persuasion strategy prediction with multi-modal learning, where we design a multi-task attention fusion model that can leverage other ad-understanding tasks to predict persuasion strategies. Further, we conduct a real-world case study on 1600 advertising campaigns of 30 Fortune-500 companies where we use our model's predictions to analyze which strategies work with different demographics (age and gender). The dataset also provides image segmentation masks, which labels persuasion strategies in the corresponding ad images on the test split. We publicly release our code and dataset https://midas-research.github.io/persuasion-advertisements/.
翻译:模拟广告的说服力,即吸引消费者的预期反应,对于研究宣传、社会心理学和营销至关重要。尽管计算机视觉说服力的计算模型十分重要,但计算机视觉说服力的计算模型仍然处于初级阶段,主要原因是缺乏基准数据集,无法提供与广告相关的说服-战略标签。受社会心理学和营销中说服文学的推动,我们引入了广泛的说服策略词汇,并建立了第一个带有说服策略说明的图像库。然后,我们用多模式学习来制定说服战略预测任务,我们设计了一个多任务关注聚合模型,可以利用其他理解的任务来预测说服战略。此外,我们还对30家Fortune-500家公司的1600个广告运动进行了真实世界案例研究,我们利用模型预测来分析哪些战略与不同的人口(年龄和性别)有关。数据集还提供图像分割面具,在测试分解的对应图像中标注说服策略。我们公开发布了我们的代码和数据集 https://midas-researgivius.giustualpho./pers。