As control-flow protection gets widely deployed, it is difficult for attackers to corrupt control-data and achieve control-flow hijacking. Instead, data-oriented attacks, which manipulate non-control data, have been demonstrated to be feasible and powerful. In data-oriented attacks, a fundamental step is to identify non-control, security-critical data. However, critical data identification processes are not scalable in previous works, because they mainly rely on tedious human efforts to identify critical data. To address this issue, we propose a novel approach that combines traditional program analysis with deep learning. At a higher level, by examining how analysts identify critical data, we first propose dynamic analysis algorithms to identify the program semantics (and features) that are correlated with the impact of a critical data. Then, motivated by the unique challenges in the critical data identification task, we formalize the distinguishing features and use customized program dependence graphs (PDG) to embed the features. Different from previous works using deep learning to learn basic program semantics, this paper adopts a special neural network architecture that can capture the long dependency paths (in the PDG), through which a critical variable propagates its impact. We have implemented a fully-automatic toolchain and conducted comprehensive evaluations. According to the evaluations, our model can achieve 90% accuracy. The toolchain uncovers 80 potential critical variables in Google FuzzBench. In addition, we demonstrate the harmfulness of the exploits using the identified critical variables by simulating 7 data-oriented attacks through GDB.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员