Gradient boosting is a sequential ensemble method that fits a new weaker learner to pseudo residuals at each iteration. We propose Wasserstein gradient boosting, a novel extension of gradient boosting that fits a new weak learner to alternative pseudo residuals that are Wasserstein gradients of loss functionals of probability distributions assigned at each input. It solves distribution-valued supervised learning, where the output values of the training dataset are probability distributions for each input. In classification and regression, a model typically returns, for each input, a point estimate of a parameter of a noise distribution specified for a response variable, such as the class probability parameter of a categorical distribution specified for a response label. A main application of Wasserstein gradient boosting in this paper is tree-based evidential learning, which returns a distributional estimate of the response parameter for each input. We empirically demonstrate the superior performance of the probabilistic prediction by Wasserstein gradient boosting in comparison with existing uncertainty quantification methods.
翻译:暂无翻译