Processing-in-memory (PIM) architectures have demonstrated great potential in accelerating numerous deep learning tasks. Particularly, resistive random-access memory (RRAM) devices provide a promising hardware substrate to build PIM accelerators due to their abilities to realize efficient in-situ vector-matrix multiplications (VMMs). However, existing PIM accelerators suffer from frequent and energy-intensive analog-to-digital (A/D) conversions, severely limiting their performance. This paper presents a new PIM architecture to efficiently accelerate deep learning tasks by minimizing the required A/D conversions with analog accumulation and neural approximated peripheral circuits. We first characterize the different dataflows employed by existing PIM accelerators, based on which a new dataflow is proposed to remarkably reduce the required A/D conversions for VMMs by extending shift and add (S+A) operations into the analog domain before the final quantizations. We then leverage a neural approximation method to design both analog accumulation circuits (S+A) and quantization circuits (ADCs) with RRAM crossbar arrays in a highly-efficient manner. Finally, we apply them to build an RRAM-based PIM accelerator (i.e., \textbf{Neural-PIM}) upon the proposed analog dataflow and evaluate its system-level performance. Evaluations on different benchmarks demonstrate that Neural-PIM can improve energy efficiency by 5.36x (1.73x) and speed up throughput by 3.43x (1.59x) without losing accuracy, compared to the state-of-the-art RRAM-based PIM accelerators, i.e., ISAAC (CASCADE).
翻译:PIM( PIM) 结构在加速众多深层学习任务方面显示出巨大的潜力。 特别是, 耐性随机存取存储( RRAM) 设备提供了一种有希望的硬件基质, 用于建设 PIM 加速器, 因为它们有能力实现高效的现场矢量矩阵倍增( VMMs ) 。 然而, 现有的 PIM 加速器存在频繁和能源密集型的模拟- 数字( A/D) 转换, 严重限制了它们的性能。 本文展示了一个新的 PIM 结构, 以通过将所需的 A/D转换与模拟积累( S+A) 和 NUR 近距离电路进行最小化( ADC) 来有效加速深层学习任务。 我们首先描述现有 PIM 加速器所使用的不同数据流流, 在此基础上, 提议新的数据流通过扩展转换和在最终四分级化前将( S+A) 操作添加到模拟域域。 然后我们利用一个神经近比方法来设计模拟累积电路( S+A) 和 QIM 水平( RIM( ADC) ) 比较精度( RIM( RIM) 水平) 数据路), 向数据流( RIM- d), 进行高的 RIM- drow- droal- d),, 数据 数据 数据, 数据 数据 数据 向 向 进行 进行 数据 数据 数据 和 向 数据 数据 向, 数据, 。