In order to achieve deep natural language understanding, syntactic constituent parsing is a vital step, highly demanded by many artificial intelligence systems to process both text and speech. One of the most recent proposals is the use of standard sequence-to-sequence models to perform constituent parsing as a machine translation task, instead of applying task-specific parsers. While they show a competitive performance, these text-to-parse transducers are still lagging behind classic techniques in terms of accuracy, coverage and speed. To close the gap, we here extend the framework of sequence-to-sequence models for constituent parsing, not only by providing a more powerful neural architecture for improving their performance, but also by enlarging their coverage to handle the most complex syntactic phenomena: discontinuous structures. To that end, we design several novel linearizations that can fully produce discontinuities and, for the first time, we test a sequence-to-sequence model on the main discontinuous benchmarks, obtaining competitive results on par with task-specific discontinuous constituent parsers and achieving state-of-the-art scores on the (discontinuous) English Penn Treebank.


翻译:为了实现深入的自然语言理解,合成构件剖析是一个关键步骤,许多人工智能系统对处理文本和言语要求很高。最近的一项提议是使用标准序列到顺序模型,将构成剖析作为一种机器翻译任务,而不是应用特定任务剖析员。虽然这些文本到分类的转换员表现出了竞争性的性能,但在准确性、覆盖面和速度方面仍然落后于经典技术。为了缩小这一差距,我们在此扩展了成份分割的顺序到顺序模型框架,不仅通过提供更强大的神经结构来改进其性能,而且还通过扩大覆盖范围来处理最复杂的合成现象:不连续结构。为此,我们设计了几种新的线性化,可以完全产生不连续性,并且首次在主要的不连续基准上测试一个序列到顺序的顺序模型,在与特定任务不连续的构件分离器相匹配时取得竞争性结果,并在(不连续的)英金库中实现状态分级。

0
下载
关闭预览

相关内容

Performance:International Symposium on Computer Performance Modeling, Measurements and Evaluation。 Explanation:计算机性能建模、测量和评估国际研讨会。 Publisher:ACM。 SIT:http://dblp.uni-trier.de/db/conf/performance/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员