Three-dimensional face dense alignment and reconstruction in the wild is a challenging problem as partial facial information is commonly missing in occluded and large pose face images. Large head pose variations also increase the solution space and make the modeling more difficult. Our key idea is to model occlusion and pose to decompose this challenging task into several relatively more manageable subtasks. To this end, we propose an end-to-end framework, termed as Self-aligned Dual face Regression Network (SADRNet), which predicts a pose-dependent face, a pose-independent face. They are combined by an occlusion-aware self-alignment to generate the final 3D face. Extensive experiments on two popular benchmarks, AFLW2000-3D and Florence, demonstrate that the proposed method achieves significant superior performance over existing state-of-the-art methods.
翻译:在野外,三维面孔密集的对齐和重建是一个具有挑战性的问题,因为部分面部信息通常在隐蔽和大张脸容的图像中缺失。 大型头部的变异还增加了解决方案的空间,使模型的模型化更加困难。 我们的关键想法是将这一具有挑战性的任务模型化,并将这一任务分解成几个相对比较容易管理的子任务。 为此,我们提议了一个端对端框架,称为“自结盟双面部倒退网络 ” ( SADRNet ), 它预测成像依赖面孔的面孔, 一种自成一体的面孔。 它们被一个隐蔽的觉觉觉觉的自我结合, 以产生最后的三维面孔。 在两个流行的基准, ALFW2000-3D和佛罗伦萨上进行的广泛实验表明, 拟议的方法比现有最先进的方法取得了显著的优异性。