Recovering a dense depth image from sparse LiDAR scans is a challenging task. Despite the popularity of color-guided methods for sparse-to-dense depth completion, they treated pixels equally during optimization, ignoring the uneven distribution characteristics in the sparse depth map and the accumulated outliers in the synthesized ground truth. In this work, we introduce uncertainty-driven loss functions to improve the robustness of depth completion and handle the uncertainty in depth completion. Specifically, we propose an explicit uncertainty formulation for robust depth completion with Jeffrey's prior. A parametric uncertain-driven loss is introduced and translated to new loss functions that are robust to noisy or missing data. Meanwhile, we propose a multiscale joint prediction model that can simultaneously predict depth and uncertainty maps. The estimated uncertainty map is also used to perform adaptive prediction on the pixels with high uncertainty, leading to a residual map for refining the completion results. Our method has been tested on KITTI Depth Completion Benchmark and achieved the state-of-the-art robustness performance in terms of MAE, IMAE, and IRMSE metrics.


翻译:从分散的 LiDAR 扫描中回收密密深度图像是一项艰巨的任务。 尽管色彩制导方法在稀疏到感知深度完成方面很受欢迎, 但他们在优化期间对像素一视同仁, 忽略了稀疏深度地图分布特点的不均衡和合成地面真相中累积的外星。 在这项工作中, 我们引入了不确定性驱动的损失功能, 以提高深度完成的稳健性, 并处理深度完成的不确定性。 具体地说, 我们提出了一个明确的不确定性配方, 以便与Jeffrey 之前一起进行稳健的深度完成。 引入了一个参数型不确定性驱动的损失, 并转化为对吵闹或缺失的数据具有强健性的新的损失功能。 同时, 我们提出了一个多尺度的联合预测模型, 可以同时预测深度和不确定性地图。 估计的不确定性地图还被用于对高度不确定的像素进行适应性预测, 从而导致绘制完成结果的剩余地图。 我们的方法在KITTI 深度完成基准上进行了测试, 并在MAE、 IMAE 和IME IMSE 等指标方面实现了最先进的强性表现。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
使用《Deep Image Prior》来做图像复原
AI研习社
7+阅读 · 2019年3月2日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
6+阅读 · 2020年9月29日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
使用《Deep Image Prior》来做图像复原
AI研习社
7+阅读 · 2019年3月2日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员