The independence of noise and covariates is a standard assumption in online linear regression and linear bandit literature. This assumption and the following analysis are invalid in the case of endogeneity, i.e., when the noise and covariates are correlated. In this paper, we study the online setting of instrumental variable (IV) regression, which is widely used in economics to tackle endogeneity. Specifically, we analyse and upper bound regret of Two-Stage Least Squares (2SLS) approach to IV regression in the online setting. Our analysis shows that Online 2SLS (O2SLS) achieves $O(d^2 \log^2 T)$ regret after $T$ interactions, where d is the dimension of covariates. Following that, we leverage the O2SLS as an oracle to design OFUL-IV, a linear bandit algorithm. OFUL-IV can tackle endogeneity and achieves $O(d \sqrt{T} \log T)$ regret. For datasets with endogeneity, we experimentally demonstrate that O2SLS and OFUL-IV incur lower regrets than the state-of-the-art algorithms for both the online linear regression and linear bandit settings.
翻译:噪声和共变独立是在线线性回归和线性土匪文献中的标准假设。 这一假设和以下分析对于内生性是无效的, 即当噪音和共变性相互关联时。 在本文中, 我们研究在经济学中广泛用于解决内生性的工具变量( IV) 回归的在线设置。 具体地说, 我们分析最小两层平方 (2SLS) 方法对在线设置中的四级回归的上界遗憾, 我们的分析表明, 在线 2SLS( O2SLS) 实现美元( d% 2\log% 2 T) 的内生性, 也就是当美元相互作用( d) 是 共变异的维度时, 则无法接受。 之后, 我们利用 O2SLSS( IV) 来设计 OUFL- IV 线性土带算法。 OCF- IV 可以解决内生性, 并实现 $O( d) qrt{T}\log T。 我们实验性地证明, O2SLISlent- train- train- translational- translational- orisquestationslatesislate than 。