In many applications, it is desired to obtain extreme eigenvalues and eigenvectors of large Hermitian matrices by efficient and compact algorithms. In particular, orthogonalization-free methods are preferred for large-scale problems for finding eigenspaces of extreme eigenvalues without explicitly computing orthogonal vectors in each iteration. For the top $p$ eigenvalues, the simplest orthogonalization-free method is to find the best rank-$p$ approximation to a positive semi-definite Hermitian matrix by algorithms solving the unconstrained Burer-Monteiro formulation. We show that the nonlinear conjugate gradient method for the unconstrained Burer-Monteiro formulation is equivalent to a Riemannian conjugate gradient method on a quotient manifold with a flat metric, thus its global convergence to a stationary point can be proven. Numerical tests suggest that it is efficient for computing the largest $k$ eigenvalues for large-scale matrices if the largest $k$ eigenvalues are nearly distributed uniformly.
翻译:在许多应用中,人们希望通过高效和紧凑的算法获得大埃米提亚基体的极端电子价值和密封源体的极端电子价值和密封源体。特别是,对于在每次迭代中寻找极端电子价值的大型天体而没有明确计算正电子值的大规模问题,偏好无孔化方法。对于顶端的美元天体值而言,最简单的无孔化方法就是通过解决未受控制的布尔-蒙泰罗配方的算法找到最佳的等级-美元近似正半无底赫米特基体。我们表明,未受控制的布尔-蒙泰罗配方体的非线性同位梯度方法相当于用平坦度标定的商式管的里曼尼加同位梯度方法,因此可以证明它与一个定点的全球趋同。Numerical测试表明,如果最大的美元等值几乎统一分布,那么对大型基质基体的最大半电子值进行计算是有效的。