Offline reinforcement learning (RL) learns exclusively from static datasets, without further interaction with the environment. In practice, such datasets vary widely in quality, often mixing expert, suboptimal, and even random trajectories. The choice of algorithm therefore depends on dataset fidelity. Behavior cloning can suffice on high-quality data, whereas mixed- or low-quality data typically benefits from offline RL methods that stitch useful behavior across trajectories. Yet in the wild it is difficult to assess dataset quality a priori because the data's provenance and skill composition are unknown. We address the problem of estimating offline dataset quality without training an agent. We study a spectrum of proxies from simple cumulative rewards to learned value based estimators, and introduce the Bellman Wasserstein distance (BWD), a value aware optimal transport score that measures how dissimilar a dataset's behavioral policy is from a random reference policy. BWD is computed from a behavioral critic and a state conditional OT formulation, requiring no environment interaction or full policy optimization. Across D4RL MuJoCo tasks, BWD strongly correlates with an oracle performance score that aggregates multiple offline RL algorithms, enabling efficient prediction of how well standard agents will perform on a given dataset. Beyond prediction, integrating BWD as a regularizer during policy optimization explicitly pushes the learned policy away from random behavior and improves returns. These results indicate that value aware, distributional signals such as BWD are practical tools for triaging offline RL datasets and policy optimization.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习笔记
专知会员服务
30+阅读 · 2月10日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
150+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
基于深度元学习的因果推断新方法
图与推荐
12+阅读 · 2020年7月21日
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
28+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
10+阅读 · 2020年11月26日
VIP会员
相关VIP内容
机器学习笔记
专知会员服务
30+阅读 · 2月10日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
150+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
基于深度元学习的因果推断新方法
图与推荐
12+阅读 · 2020年7月21日
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
28+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员