Offline reinforcement learning (RL) learns exclusively from static datasets, without further interaction with the environment. In practice, such datasets vary widely in quality, often mixing expert, suboptimal, and even random trajectories. The choice of algorithm therefore depends on dataset fidelity. Behavior cloning can suffice on high-quality data, whereas mixed- or low-quality data typically benefits from offline RL methods that stitch useful behavior across trajectories. Yet in the wild it is difficult to assess dataset quality a priori because the data's provenance and skill composition are unknown. We address the problem of estimating offline dataset quality without training an agent. We study a spectrum of proxies from simple cumulative rewards to learned value based estimators, and introduce the Bellman Wasserstein distance (BWD), a value aware optimal transport score that measures how dissimilar a dataset's behavioral policy is from a random reference policy. BWD is computed from a behavioral critic and a state conditional OT formulation, requiring no environment interaction or full policy optimization. Across D4RL MuJoCo tasks, BWD strongly correlates with an oracle performance score that aggregates multiple offline RL algorithms, enabling efficient prediction of how well standard agents will perform on a given dataset. Beyond prediction, integrating BWD as a regularizer during policy optimization explicitly pushes the learned policy away from random behavior and improves returns. These results indicate that value aware, distributional signals such as BWD are practical tools for triaging offline RL datasets and policy optimization.
翻译:暂无翻译