Ky Fan's trace minimization principle is extended along the line of the Brockett cost function $\mathrm{trace}(DX^H AX)$ in $X$ on the Stiefel manifold, where $D$ of an apt size is positive definite. Specifically, we investigate $\inf_X \mathrm{trace}(DX^H AX)$ subject to $X^H BX=I_k$ or $J_k=\mathrm{diag}(\pm 1)$. We establish conditions under which the infimum is finite and when it is finite, analytic solutions are obtained in terms of the eigenvalues and eigenvectors of the matrix pencil $A-\lambda B$, where $B$ is possibly indefinite and singular, and $D$ is also possibly indefinite.
翻译:Ky Fan的追踪最小化原则沿着Brockett 成本函数 $\ mathrm{trace} (DX ⁇ H AX) 的线条延伸,在Stiefel 方块上以X美元计算,其中美元大小确定为正数。 具体地说,我们调查$inf_ X\ mathrm{trace}(DX ⁇ H AX) 美元,但需在X+H BX=I_k$或J_k ⁇ mathrm{diag} (\pm1) 美元范围内。 我们建立了以下条件,即最小值是有限的,在有限时,分析解决方案是以矩阵铅笔 $A- glambda B 美元(其中美元可能是不定期和单数,而$D美元也可能是无限期的。