In this work we propose a discretisation method for the Reissner--Mindlin plate bending problem in primitive variables that supports general polygonal meshes and arbitrary order. The method is inspired by a two-dimensional discrete de Rham complex for which key commutation properties hold that enable the cancellation of the contribution to the error linked to the enforcement of the Kirchhoff constraint. Denoting by $k\ge 0$ the polynomial degree for the discrete spaces and by $h$ the meshsize, we derive for the proposed method an error estimate in $h^{k+1}$ for general $k$, as well as a locking-free error estimate for the lowest-order case $k=0$. The theoretical results are validated on a complete panel of numerical tests.
翻译:在这项工作中,我们为Reissner-Mindlin板块在原始变量中弯曲的问题提出了一个离散方法,支持一般多边形网间和任意顺序。该方法受二维离散的Rham综合体的启发,对于该综合体,关键折价属性使与执行Kirchhoff限制有关的差错的促成因素得以取消。用美元表示离散空间的多元度为0美元和网状值为1美元,我们为拟议方法得出一个以$h ⁇ k+1美元计算的一般美元误差估计数,以及对最低单案的无锁误差估计值为1美元=0美元。理论结果由完整的数字测试小组验证。