A q-Gauss-Newton algorithm is an iterative procedure that solves nonlinear unconstrained optimization problems based on minimization of the sum squared errors of the objective function residuals. Main advantage of the algorithm is that it approximates matrix of q-second order derivatives with the first-order q-Jacobian matrix. For that reason, the algorithm is much faster than q-steepest descent algorithms. The convergence of q-GN method is assured only when the initial guess is close enough to the solution. In this paper the influence of the parameter q to the non-linear problem solving is presented through three examples. The results show that the q-GD algorithm finds an optimal solution and speeds up the iterative procedure.
翻译:q- Gaus- Newton 算法是一种迭接程序,它解决非线性、 不受限制的优化问题, 其基础是尽量减少客观函数剩余部分的平方差错。 算法的主要优点是它与第一级 q- Jacobian 矩阵相近于 q- second- second 衍生物的 q- second- second 衍生物矩阵。 因此, 算法比 q- septest 下游算法要快得多。 只有当最初的猜想离解决方案足够近时, q- GN 方法的趋同才能得到保证。 在本文中, 参数 q 至非线性问题解决方法的影响力通过三个例子呈现出来。 结果显示, q- GD 算法找到一个最佳的解决方案, 并加速迭接程序 。