A bipartite graph $G=(A,B,E)$ is ${\cal H}$-convex, for some family of graphs ${\cal H}$, if there exists a graph $H\in {\cal H}$ with $V(H)=A$ such that the set of neighbours in $A$ of each $b\in B$ induces a connected subgraph of $H$. Many $\mathsf{NP}$-complete problems, including problems such as Dominating Set, Feedback Vertex Set, Induced Matching and List $k$-Colouring, become polynomial-time solvable for ${\mathcal H}$-convex graphs when ${\mathcal H}$ is the set of paths. In this case, the class of ${\mathcal H}$-convex graphs is known as the class of convex graphs. The underlying reason is that the class of convex graphs has bounded mim-width. We extend the latter result to families of ${\mathcal H}$-convex graphs where (i) ${\mathcal H}$ is the set of cycles, or (ii) ${\mathcal H}$ is the set of trees with bounded maximum degree and a bounded number of vertices of degree at least $3$. As a consequence, we can re-prove and strengthen a large number of results on generalized convex graphs known in the literature. To complement result (ii), we show that the mim-width of ${\mathcal H}$-convex graphs is unbounded if ${\mathcal H}$ is the set of trees with arbitrarily large maximum degree or an arbitrarily large number of vertices of degree at least $3$. In this way we are able to determine complexity dichotomies for the aforementioned graph problems. Afterwards we perform a more refined width-parameter analysis, which shows even more clearly which width parameters are bounded for classes of ${\cal H}$-convex graphs.


翻译:双叶石图$G=( A, B, E) 美元为 $ h= 美元 平方美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 如果存在一个美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 双叶 美元 美元 美元 的完整问题, 包括以下问题 : 确定 Set, 反馈 Vertex Set, 启动匹配和列出$ 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 的 美元 美元 美元 美元 美元 美元 美元 美元 的 美元 美元 数 问题 。 根本原因是, 蛋克斯 的 数字 以 美元 美元 美元 的 美元 的 数字 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 。 我们方 直方 直方 直方 直方 直方 方 方 直方 直方 直方 直方 直方 直方 直方 方 方 方 方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 方 方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直

1
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
最新《图嵌入组合优化》综述论文,40页pdf
专知会员服务
33+阅读 · 2020年9月7日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
216+阅读 · 2020年6月5日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月16日
Arxiv
0+阅读 · 2021年7月16日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年7月16日
Arxiv
0+阅读 · 2021年7月16日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员