In this paper, we study Wasserstein Generative Adversarial Networks (WGANs) using GroupSort neural networks as discriminators. We show that the error bound for the approximation of target distribution depends on both the width/depth (capacity) of generators and discriminators, as well as the number of samples in training. A quantified generalization bound is established for Wasserstein distance between the generated distribution and the target distribution. According to our theoretical results, WGANs have higher requirement for the capacity of discriminators than that of generators, which is consistent with some existing theories. More importantly, overly deep and wide (high capacity) generators may cause worse results (after training) than low capacity generators if discriminators are not strong enough. Numerical results on the synthetic data (swiss roll) and MNIST data confirm our theoretical results, and demonstrate that the performance by using GroupSort neural networks as discriminators is better than that of the original WGAN.


翻译:在本文中,我们用GroupSort神经网络(WGANs)作为歧视者来研究瓦塞尔斯坦基因突变网络(WGANs),我们用GroupSort神经网络(GroupSort Enalment Aversarial Networks)作为歧视者来研究瓦塞尔斯坦基因突变网络(WGANs),我们发现,目标分布近似的误差取决于发电机和导体的宽度/深度(能力)以及培训中的样本数量,对瓦塞斯坦射电分布和目标分布之间的距离规定了量化的通用约束。根据我们的理论结果,WGANs对歧视者的能力的要求高于与某些现有理论相一致的发电机的能力。 更重要的是,如果歧视者不够强大,过度深度和广度(高容量)的发电机可能会造成比低容量发电机更坏的结果(培训后),如果歧视者不够强大的话。 合成数据(swis滚)的数值结果和MNIST数据证实了我们的理论结果,并表明利用GromSort神经网络作为歧视者的表现比原WGAN要好。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
68+阅读 · 2020年10月24日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
GAN猫的脸
机械鸡
11+阅读 · 2017年7月8日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Designing GANs: A Likelihood Ratio Approach
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
8+阅读 · 2019年2月15日
Arxiv
4+阅读 · 2018年9月25日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
6+阅读 · 2018年3月12日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
68+阅读 · 2020年10月24日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
GAN猫的脸
机械鸡
11+阅读 · 2017年7月8日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
相关论文
Designing GANs: A Likelihood Ratio Approach
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
8+阅读 · 2019年2月15日
Arxiv
4+阅读 · 2018年9月25日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
6+阅读 · 2018年3月12日
Top
微信扫码咨询专知VIP会员