In this paper, we propose an approximating framework for analyzing parametric Markov models. Instead of computing complex rational functions encoding the reachability probability and the reward values of the parametric model, we exploit the scenario approach to synthesize a relatively simple polynomial approximation. The approximation is probably approximately correct (PAC), meaning that with high confidence, the approximating function is close to the actual function with an allowable error. With the PAC approximations, one can check properties of the parametric Markov models. We show that the scenario approach can also be used to check PRCTL properties directly, without synthesizing the polynomial at first hand. We have implemented our algorithm in a prototype tool and conducted thorough experiments. The experimental results demonstrate that our tool is able to compute polynomials for more benchmarks than state of the art tools such as PRISM and Storm, confirming the efficacy of our PAC-based synthesis.
翻译:本文提出了一种用于分析参数马尔可夫模型的近似框架。我们利用情景方法综合较为简单的多项式逼近来替代复杂的有理函数,从而描述参数模型的可达性概率和奖励值。逼近的函数有很高的准确性,即'可能近似正确(PAC)'。通过PAC逼近,可以检查参数马尔可夫模型的特性。我们还展示了情景方法可以用于直接检查PRCTL特性,而无需先合成多项式。我们在原型工具中实现了我们的算法,并进行了彻底的试验。实验结果表明,我们的工具可以为更多的基准测试计算多项式,相比PRISM和Storm等现有工具,证实了我们的基于PAC的综合的有效性。