Leximin is a common approach to multi-objective optimization, frequently employed in fair division applications. In leximin optimization, one first aims to maximize the smallest objective value; subject to this, one maximizes the second-smallest objective; and so on. Often, even the single-objective problem of maximizing the smallest value cannot be solved accurately. What can we hope to accomplish for leximin optimization in this situation? Recently, Henzinger et al. (2022) defined a notion of \emph{approximate} leximin optimality. Their definition, however, considers only an additive approximation. In this work, we first define the notion of approximate leximin optimality, allowing both multiplicative and additive errors. We then show how to compute, in polynomial time, such an approximate leximin solution, using an oracle that finds an approximation to a single-objective problem. The approximation factors of the algorithms are closely related: an $(\alpha,\epsilon)$-approximation for the single-objective problem (where $\alpha \in (0,1]$ and $\epsilon \geq 0$ are the multiplicative and additive factors respectively) translates into an $\left(\frac{\alpha^2}{1-\alpha + \alpha^2}, \frac{\epsilon}{1-\alpha +\alpha^2}\right)$-approximation for the multi-objective leximin problem, regardless of the number of objectives. Finally, we apply our algorithm to obtain an approximate leximin solution for the problem of \emph{stochastic allocations of indivisible goods}. For this problem, assuming sub-modular objectives functions, the single-objective egalitarian welfare can be approximated, with only a multiplicative error, to an optimal $1-\frac{1}{e}\approx 0.632$ factor w.h.p. We show how to extend the approximation to leximin, over all the objective functions, to a multiplicative factor of $\frac{(e-1)^2}{e^2-e+1} \approx 0.52$ w.h.p or $\frac{1}{3}$ deterministically.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年7月21日
Arxiv
0+阅读 · 2023年7月21日
Arxiv
11+阅读 · 2020年12月2日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员