Periodic 3D reconstruction is essential for crop monitoring, but costly when each cycle restarts from scratch, wasting resources and ignoring information from previous captures. We propose temporal-prior-guided view planning for periodic plant reconstruction, in which a previously reconstructed model of the same plant is non-rigidly aligned to a new partial observation to form an approximation of the current geometry. To accommodate plant growth, we inflate this approximation and solve a set covering optimization problem to compute a minimal set of views. We integrated this method into a complete pipeline that acquires one additional next-best view before registration for robustness and then plans a globally shortest path to connect the planned set of views and outputs the best view sequence. Experiments on maize and tomato under hemisphere and sphere view spaces show that our system maintains or improves surface coverage while requiring fewer views and comparable movement cost compared to state-of-the-art baselines.
翻译:暂无翻译