We propose an approach to modelling large-scale multi-agent dynamical systems allowing interactions among more than just pairs of agents using the theory of mean-field games and the notion of hypergraphons, which are obtained as limits of large hypergraphs. To the best of our knowledge, ours is the first work on mean field games on hypergraphs. Together with an extension to a multi-layer setup, we obtain limiting descriptions for large systems of non-linear, weakly-interacting dynamical agents. On the theoretical side, we prove the well-foundedness of the resulting hypergraphon mean field game, showing both existence and approximate Nash properties. On the applied side, we extend numerical and learning algorithms to compute the hypergraphon mean field equilibria. To verify our approach empirically, we consider an epidemic control problem and a social rumor spreading model, where we give agents intrinsic motivation to spread rumors to unaware agents.
翻译:我们提出一种方法来模拟大规模多试剂动态系统,使不只是一对代理人之间的相互作用能够使用平均场游戏理论和高射线概念来模拟大规模多试剂动态系统,这些理论和高射线概念是作为大型高射线的极限获得的。我们最了解的是,我们首先在高射线上进行中等场游戏的工作。加上一个多层结构的扩展,我们获得了非线性、低相互作用性动态剂大型系统的有限描述。在理论方面,我们证明由此产生的超射线平均场游戏有充分的根据,显示存在和近似纳什特性。在应用方面,我们扩展了数字和学习算法,以计算高射线中平均平准。为了根据经验来验证我们的方法,我们考虑了流行病控制问题和社会流言传播模式,我们让代理人将谣言传播给不知情的代理人的内在动机。