Place recognition is an essential and challenging task in loop closing and global localization for robotics and autonomous driving applications. Benefiting from the recent advances in deep learning techniques, the performance of LiDAR place recognition (LPR) has been greatly improved. However, current deep learning-based methods suffer from two major problems: poor generalization ability and catastrophic forgetting. In this paper, we propose a continual contrastive learning method, named CCL, to tackle the catastrophic forgetting problem and generally improve the robustness of LPR approaches. Our CCL constructs a contrastive feature pool and utilizes contrastive loss to train more transferable representations of places. When transferred into new environments, our CCL continuously reviews the contrastive memory bank and applies a distribution-based knowledge distillation to maintain the retrieval ability of the past data while continually learning to recognize new places from the new data. We thoroughly evaluate our approach on Oxford, MulRan, and PNV datasets using three different LPR methods. The experimental results show that our CCL consistently improves the performance of different methods in different environments outperforming the state-of-the-art continual learning method. The implementation of our method has been released at https://github.com/cloudcjf/CCL.
翻译:位置识别是机器人和自动驾驶应用中的循环闭环和全局定位的重要且具有挑战性的任务。近年来,得益于深度学习技术的最新进展,激光雷达位置识别(LPR)的性能得到了极大的提高。然而,当前的基于深度学习的方法存在两个主要问题:“泛化能力差”和“灾难性遗忘”。本文提出了一种持续性对比学习方法,称为CCL,以解决灾难性遗忘问题并通常提高LPR方法的鲁棒性。我们的CCL构建了一个对比特征池,并利用对比损失训练更具可传输性的场所表示。当转移到新环境时,我们的CCL持续审查对比存储器库,并应用基于分布的知识蒸馏来维护从过去的数据中检索能力,同时不断学习从新数据中识别新地点。我们在Oxford,MulRan和PNV数据集上使用三种不同LPR方法对我们的方法进行了彻底的评估。实验结果表明,我们的CCL在不同的环境中始终提高了不同方法的性能,超越了最先进的持续学习方法。我们的方法的实现已经发布在https://github.com/cloudcjf/CCL。