In this paper we describe a combined combinatorial/numerical approach to studying equilibria and bifurcations in network models arising in Systems Biology. ODE models of the dynamics suffer from high dimensional parameters which presents a significant obstruction to studying the global dynamics via numerical methods. The main point of this paper is to demonstrate that combining classical techniques with recently developed combinatorial methods provides a richer picture of the global dynamics despite the high parameter dimension. Given a network topology describing state variables which regulate one another via monotone and bounded functions, we first use the Dynamic Signatures Generated by Regulatory Networks (DSGRN) software to obtain a combinatorial summary of the dynamics. This summary is coarse but global and we use this information as a first pass to identify "interesting'' subsets of parameters in which to focus. We construct an associated ODE model with high parameter dimension using our {\em Network Dynamics Modeling and Analysis} (NDMA) Python library. We introduce algorithms for efficiently investigating the dynamics in these ODE models restricted to these parameter subsets. Finally, we perform a statistical validation of the method and several interesting dynamical applications including finding saddle-node bifurcations in a 54 parameter model.
翻译:在本文中,我们描述了一种在系统生物学中产生的网络模型中研究平衡和分离的混合组合/数字方法。动力学模型受到高维参数的影响,这些参数严重妨碍通过数字方法研究全球动态。本文件的要点是表明,将古典技术与最近开发的组合方法相结合,可以更全面地反映全球动态,尽管参数的维度较高。鉴于一个网络地形学,描述了通过单调和捆绑功能相互调节的状态变量,我们首先使用由监管网络软件生成的动态签名软件来获取动态的组合摘要。这一摘要粗略但全球性,我们首先利用这一信息来确定“有兴趣的”参数子集以集中。我们用我们的“仁网络动态建模和分析”(NDMA) Python 图书馆来构建一个具有高参数维度的相联的模型。我们引入了一种算法,以高效率地调查这些源码子中ODE模型的动态模型。最后,我们用一个模型对方法进行了统计验证,并用若干有趣的动态参数进行双向研究。