We consider the classical molecular beam epitaxy (MBE) model with logarithmic type potential known as no-slope-selection. We employ a third order backward differentiation (BDF3) in time with implicit treatment of the surface diffusion term. The nonlinear term is approximated by a third order explicit extrapolation (EP3) formula. We exhibit mild time step constraints under which the modified energy dissipation law holds. We break the second Dahlquist barrier and develop a new theoretical framework to prove unconditional uniform energy boundedness with no size restrictions on the time step. This is the first unconditional result for third order BDF methods applied to the MBE models without introducing any stabilization terms or fictitious variables. A novel theoretical framework is also established for the error analysis of high order methods.


翻译:我们考虑了古典分子束缩数模型(MBE),其对数类型潜力被称为无斜体选择;我们采用第三顺序后向差异(BDF3),及时对表面扩散术语进行隐含处理;非线性术语近似于第三顺序直线外推法(EP3)公式;我们展示了修改的能量消散法所遵循的温和时间步骤限制;我们打破了第二个达尔奎斯特屏障,并开发了新的理论框架,以证明无条件的统一能源界限,对时间步骤没有尺寸限制;这是在不引入任何稳定条件或虚构变量的情况下对MBE模型应用第三顺序BDF方法的第一个无条件结果;我们还为高顺序方法的错误分析建立了一个新的理论框架。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【斯坦福经典书】统计学稀疏性:Lasso与泛化性,362页pdf
专知会员服务
36+阅读 · 2020年11月15日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月21日
Arxiv
0+阅读 · 2021年12月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员