In this paper, a generalized finite element method (GFEM) with optimal local approximation spaces for solving high-frequency heterogeneous Helmholtz problems is systematically studied. The local spaces are built from selected eigenvectors of local eigenvalue problems defined on generalized harmonic spaces. At both continuous and discrete levels, $(i)$ wavenumber explicit and nearly exponential decay rates for the local approximation errors are obtained without any assumption on the size of subdomains; $(ii)$ a quasi-optimal and nearly exponential global convergence of the method is established by assuming that the size of subdomains is $O(1/k)$ ($k$ is the wavenumber). A novel resonance effect between the wavenumber and the dimension of local spaces on the decay of error with respect to the oversampling size is implied by the analysis. Furthermore, for fixed dimensions of local spaces, the discrete local errors are proved to converge as $h\rightarrow 0$ ($h$ denoting the mesh size) towards the continuous local errors. The method at the continuous level extends the plane wave partition of unity method [I. Babuska and J. M. Melenk, Int.\;J.\;Numer.\;Methods Eng., 40 (1997), pp.~727--758] to the heterogeneous-coefficients case, and at the discrete level, it delivers an efficient non-iterative domain decomposition method for solving discrete Helmholtz problems resulting from standard FE discretizations. Numerical results are provided to confirm the theoretical analysis and to validate the proposed method.


翻译:在本文中,正在系统地研究一种通用的有限元素方法(GFEM),该方法具有解决高频混杂肝脏问题的最佳本地近似空间;当地空间是用通用协调空间定义的局部二元值问题所选定的部分成的。在连续和离散的层次上,在对本地近似误差获得美元(一)的波数明显和近乎指数衰减率,而没有假定亚度误差大小; 美元(二)是该方法的准最佳和近乎直径全球趋同点,因为假设亚度误差的大小为O(1美元/k)的域值(美元为波数)。 分析意味着波数和本地空间在超标度误差方面产生的新颖共振效果效应。 此外,对于本地空域的固定尺寸,提出的离异差误差被证明为 $rightrorrowroom 0美元(注意中差值) 。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
【CCL 2019】ATT-第19期:生成对抗网络 (邱锡鹏)
专知会员服务
49+阅读 · 2019年11月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月20日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员