The group testing problem is concerned with identifying a small set of infected individuals in a large population. At our disposal is a testing procedure that allows us to test several individuals together. In an idealized setting, a test is positive if and only if at least one infected individual is included and negative otherwise. Significant progress was made in recent years towards understanding the information-theoretic and algorithmic properties in this noiseless setting. In this paper, we consider a noisy variant of group testing where test results are flipped with certain probability, including the realistic scenario where sensitivity and specificity can take arbitrary values. Using a test design where each individual is assigned to a fixed number of tests, we derive explicit algorithmic bounds for two commonly considered inference algorithms and thereby naturally extend the results of Scarlett \& Cevher (2016) and Scarlett \& Johnson (2020). We provide improved performance guarantees for the efficient algorithms in these noisy group testing models -- indeed, for a large set of parameter choices the bounds provided in the paper are the strongest currently proved.
翻译:群体测试问题涉及在大量人口中识别一小批受感染者的问题。 我们使用的是一种测试程序, 允许我们一起测试几个人。 在理想化环境中, 测试是积极的, 如果并且只有至少包括一名受感染者, 并且是负面的。 近年来,在理解无噪音环境中的信息理论和算法特性方面取得了重大进展。 在本文中, 我们考虑的是群体测试结果的噪音变异, 测试结果有一定的概率被翻转, 包括现实的情景, 敏感度和特殊性可以随任意值。 我们使用一个测试设计, 将每个人分配到一个固定数量的测试中, 我们为两种通常考虑的推断算法得出明确的算法界限, 从而自然扩展了Scarlett ⁇ Cevher 和 Scarlett ⁇ ⁇ Johnson (202020年) 的结果。 我们为这些吵闹群体测试模型中的有效算法提供了更好的性保证 -- 事实上, 对于大量参数选择, 文件中提供的界限是目前证明最强的。