This paper presents a comprehensive analysis of how excitation design influences the identification of the inertia properties of rigid nano- and micro-satellites. We simulate nonlinear attitude dynamics with reaction-wheel coupling, actuator limits, and external disturbances, and excite the system using eight torque profiles of varying spectral richness. Two estimators are compared, a batch Least Squares method and an Extended Kalman Filter, across three satellite configurations and time-varying inertia scenarios. Results show that excitation frequency content and estimator assumptions jointly determine estimation accuracy and robustness, offering practical guidance for in-orbit adaptive inertia identification by outlining the conditions under which each method performs best. The code is provided as open-source .
翻译:暂无翻译